Турбовальный двигатель

Турбовальный двигатель
Как известно, основной узел любого газотурбинного двигателя (ГТД) – это турбокомпрессор. В нем компрессор работает в связке с турбиной, которая его вращает. Функции турбины этим могут и ограничиться. Тогда вся оставшаяся полезная энергия газового потока, проходящего через двигатель, срабатывается в выходном устройстве (реактивном сопле). Как говорил мой преподаватель «спускается на ветер». Тем самым создается реактивная тяга и ГТД становится обычным турбореактивным двигателем (ТРД). Но можно сделать и по-другому. Турбину ведь можно заставить кроме компрессора вращать и другие нужные агрегаты, используя ту самую оставшуюся полезную энергию. Это может быть, например, самолетный воздушный винт. В этом случае ГТД становится уже турбовинтовым двигателем, в котором 10-15% энергии все же расходуется «на воздух», то есть создает реактивную тягу.
Принцип работы турбовального двигателя.
Принцип работы турбовального двигателя.
Но если вся полезная энергия в двигателе срабатывается на валу и через него передается для привода агрегатов, то мы уже имеем так называемый турбовальный двигатель (ТваД).
Такой двигатель чаще всего имеет свободную турбину. То есть вся турбина как бы поделена на две части, между собой механически несвязанные. Связь между ними только газодинамическая. Газовый поток, вращая первую турбину, отдает часть своей мощности для вращения компрессора и далее, вращая вторую, тем самым через вал этой (второй) турбины приводит в действие полезные агрегаты. Сопла на таком двигателе нет. То есть выходное устройство для отработанных газов конечно имеется, но соплом оно не является и тяги не создает. Просто труба… Зачастую еще и искривленная.
Компоновка двигателя Arriel 1E2.
Компоновка двигателя Arriel 1E2.
Турбовальный двигатель ARRIEL 1E2.
Турбовальный двигатель ARRIEL 1E2.
Eurocopter BK 117 c 2-мя турбовальными двигателями Arriel 1E2.
Eurocopter BK 117 c 2-мя турбовальными двигателями Arriel 1E2.
Выходной вал ТваД, с которого снимается вся полезная мощность, может быть направлен как назад, через канал выходного устройства, так и вперед, либо через полый вал турбокомпрессора, либо через редуктор вне корпуса двигателя.
Компоновка двигателя Arrius 2B2.
Компоновка двигателя Arrius 2B2.
Турбовальный двигатель ARRIUS 2B2.
Турбовальный двигатель ARRIUS 2B2.
Eurocopter EC 135 с 2-мя турбовальными двигателями Arrius 2B2
Eurocopter EC 135 с 2-мя турбовальными двигателями Arrius 2B2
Надо сказать, что редуктор – непременная принадлежность турбовального двигателя. Ведь скорость вращения как ротора турбокомпрессора, так и ротора свободной турбины велика настолько, что это вращение не может быть напрямую передано на приводимые агрегаты. Они просто не смогут выполнять свои функции и даже могут разрушиться. Поэтому между свободной турбиной и полезным агрегатом обязательно ставится редуктор для снижения частоты вращения приводного вала.
Компоновка двигателя Makila 1A1.
Компоновка двигателя Makila 1A1.
Турбовальный двигатель MAKILA 1A1.
Турбовальный двигатель MAKILA 1A1
Eurocopter AS 332 Super Puma с 2-мя турбовальными двигателями Makila 1A1.
Eurocopter AS 332 Super Puma с 2-мя турбовальными двигателями Makila 1A1.
Компрессор у ТваД может быть осевым (если двигатель мощный) либо центробежным. Часто компрессор бывает и смешанным по конструкции, то есть в нем есть как осевые, так и центробежные ступени. В остальном принцип работы этого двигателя такой же, как и у ТРД. Примером разнообразия конструкций ТваД могут служить двигатели известной французской двигателестроительной фирмы TURBOMEKA. Здесь я представляю ряд иллюстраций на эту тему (их сегодня вообще много как-то получилось :-)
Компоновка двигателя Arrius 2K1.
Компоновка двигателя Arrius 2K1.
Турбовальный двигатель ARRIUS 2K1.
Турбовальный двигатель ARRIUS 2K1.
Вертолет Agusta A-109S с 2-мя турбовальными двигателями Arrius 2K1.
Вертолет Agusta A-109S с 2-мя турбовальными двигателями Arrius 2K1.
Основное свое применение турбовальный двигатель находит сегодня конечно же в авиации, по большей части на вертолетах. Его часто и называют вертолетный ГТД. Полезная нагрузка в этом случае – несущий винт вертолета. Известным примером ( кроме французов :-) )могут служить широко распространенные до сих пор отличные классические вертолеты МИ-8 и МИ-24 с двигателями ТВ2-117 и ТВ3-117.
Вертолет МИ-8Т с 2-мя турбовальными двигателями ТВ2-117.
Вертолет МИ-8Т с 2-мя турбовальными двигателями ТВ2-117.
Турбовальный двигатель ТВ2-117.
Турбовальный двигатель ТВ2-117.
Вертолет МИ-24 с 2-мя турбовальными двигателями ТВ3-117.
Вертолет МИ-24 с 2-мя турбовальными двигателями ТВ3-117.
Турбовальный двигатель ТВ3-117 для вертолета МИ-24.
Турбовальный двигатель ТВ3-117 для вертолета МИ-24.
Кроме того ТваД может применяться в качестве вспомогательной силовой установки (ВСУ, о ней подробнее в следующей статье), а также в виде специальных устройств для запуска двигателей. Такие устройства представляют собой миниатюрный турбовальный двигатель, свободная турбина которого раскручивает ротор основного двигателя при его запуске. Называется такое устройство турбостартер. В качестве примера могу привести турбостартер ТС-21, используемый на двигателе АЛ-21Ф-3, который устанавливается на самолеты СУ-24, в частности на мой родной СУ-24МР.
Двигатель АЛ-21Ф-3 с турбостартером ТС-21.
Двигатель АЛ-21Ф-3 с турбостартером ТС-21.
Турбостартер ТС-21, снятый с двигателя.
Турбостартер ТС-21, снятый с двигателя.
Фронтовой бомбардировщик СУ-24М с 2-мя двигателями АЛ-21Ф-3.
Фронтовой бомбардировщик СУ-24М с 2-мя двигателями АЛ-21Ф-3.
Однако, говоря о турбовальных двигателях, нельзя не сказать о совсем неавиационном направлении их использования. Дело в том, что ведь изначально газотурбинный двигатель не был монополией авиации. Главный его рабочий орган, газовая турбина, создавался задолго до появления самолетов. И предназначался ГТД для целей более прозаических, нежели полеты в воздушной стихии. Эта самая воздушная стихия его все же завоевала. Однако неавиационное приземленное предназначение существует и серьезности своей не потеряло, скорее наоборот. На земле, так же как и в воздухе ГТД (турбовальный двигатель) применяется на транспорте. Первое – это перекачка природного газа по крупным магистралям через газоперекачивающие станции. ГТД используются здесь в качестве мощных насосов. Второе – это водный транспорт. Суда, использующие турбовальные газотурбинные двигатели называют газотурбоходы. Это чаще всего суда на подводных крыльях, у которых гребной винт приводит в движение турбовальный двигатель механически через редуктор или электрически через генератор, который он вращает. Либо это суда на воздушной подушке, которая создается при помощи ГТД.
Газотурбоход Циклон-М с 2-мя газотурбинными двигателями ДО37.
Газотурбоход "Циклон-М" с 2-мя газотурбинными двигателями ДО37.
Пассажирских газотурбоходов за российскую историю было всего два. Последнее очень перспективное судно «Циклон-М» появилось в очень неудобное для себя время в 1986 году. Успешно пройдя все испытания, оно «благополучно» перестало существовать для России. Перестройка… Более таких судов не строили. Зато у военных в этом плане дела обстоят несколько лучше. Чего стоит один только десантный корабль «Зубр», самое большое в мире судно на воздушной подушке.
Десантный корабль на воздушной подушке Зубр с газотурбинными двигателями.
Десантный корабль на воздушной подушке "Зубр" с газотурбинными двигателями.
Третье – это железнодорожный транспорт. Локомотивы на которых стоят турбовальные газотурбинные двигатели, называют газотурбовозы. На них используется так называемая электрическая передача. ГТД вращает электрогенератор, а вырабатываемый им ток, в свою очередь, вращает электродвигатели, приводящие локомотив в движение. В 60-е годы прошлого века в СССР проходили довольно успешную опытную эксплуатацию три газотурбовоза. Два пассажирских и один грузовой. Однако они не выдержали соревновавния с электровозами и в начале 70-х проект был свернут. Но в 2007 году по инициативе ОАО «РЖД» был изготовлен опытный образец газотурбовоза с ГТД, работающем на сжиженном природном газе. Газотурбовоз успешно прошел испытания, планируется его дальнейшая эксплуатация. И наконец четвертое, самое, наверное, экзотическое… Танки. Грозные боевые машины. На сегодняшний момент достаточно широко известны два типа ныне использующихся боевых танков с газотурбинными двигателями. Это американский М1 Abrams и российский Т-80.
Танк M1A1 Abrams с газотурбинным двигателем AGT-1500.
Танк M1A1 Abrams с газотурбинным двигателем AGT-1500.
Во всех вышеописанных случаях применения ГТД (суть турбовальный двигатель), он обычно заменяет дизельный двигатель. Это происходит потому, что (как я уже описывал здесь) при одинаковых размерах турбовальный двигатель значительно превосходит дизельный по мощности, имеет гораздо меньший вес и шумность.
Танк Т-80 с газотурбинным двигателем ГТД-1000Т.
Танк Т-80 с газотурбинным двигателем ГТД-1000Т.
Однако у него есть и крупный недостаток. Он обладает сравнительно низким коэффициентом полезного действия, что обуславливает большой расход топлива. Это естественно снижает запас хода любого транспортного средства (и танка в том числе). Кроме того он чувствителен к грязи и посторонним предметам, всасываемым вместе с воздухом. Они могут повредить лопатки компрессора. Поэтому приходится создавать достаточно объемные системы очистки при использовании такого двигателя. Эти недостатки достаточно серьезны. Именно поэтому турбовальный двигатель получил гораздо большее распространение в авиации, чем в наземном транспорте. Там этот трудяга-движок, ничего не пуская «на ветер», заставляет подниматься в воздух вертолеты. И они в родной для них стихии из несуразных, на первый взгляд, машин превращаются в изумительные по красоте и возможностям творения рук человеческих… Все-таки авиация – это здорово.

Турбовальный двигатель в автомобилях

Идея применить в автомобилях газотурбинные двигатели возникла давно. Но лишь за последние несколько лет их конструкция достигла той степени совершенства, которая дает им право на существование. Высокий уровень развития теории лопаточных двигателей, металлургии и техники производства обеспечивает теперь реальную возможность создания надежных газотурбинных двигателей, способных с успехом заменить на автомобиле поршневые двигатели внутреннего сгорания.

Принцип работы газотурбинного двигателя

Турбовальный двигатель принцип работы
На рисунке показана принципиальная схема такого двигателя. Ротационный компрессор, находящийся на одном валу с газовой турбиной, засасывает воздух из атмосферы, сжимает его и нагнетает в камеру сгорания. Топливный насос, также приводимый в движение от вала турбины, нагнетает топливо в форсунку, установленную в камере сгорания. Газообразные продукты сгорания поступают через направляющий аппарат на рабочие лопатки колеса газовой турбины и заставляют его вращаться в одном, определенном направлении. Газы, отработавшие в турбине, выпускаются в атмосферу через патрубок. Вал газовой турбины вращается в подшипниках. По сравнению с поршневыми двигателями внутреннего сгорания газотурбинный двигатель обладает весьма существенными преимуществами. Правда, он тоже еще не свободен от недостатков, но они постепенно ликвидируются по мере развития конструкции. Характеризуя газовую турбину, прежде всего следует отметить, что она, как и паровая турбина, может развивать большие обороты. Это дает возможность получать значительную мощность от гораздо меньших по размерам (по сравнению с поршневыми) и почти в 10 раз более легких по весу двигателей. Вращательное движение вала является по существу единственным видом движения в газовой турбине, в то время как в двигателе внутреннего сгорания, помимо вращательного движения коленчатого вала, имеет место возвратно-поступательное движение поршня, а также сложное движение шатуна. Газотурбинные двигатели не требуют специальных устройств для охлаждения. Отсутствие трущихся деталей при минимальном количестве подшипников обеспечивают длительную работоспособность и высокую надежность газотурбинного двигателя. Для питания газотурбинного двигателя используется керосин либо топлива типа дизельных. Основная причина, которая сдерживает развитие автомобильных газотурбинных двигателей, заключается в необходимости искусственно ограничивать температуру газов, поступающих на лопатки турбины. Это снижает коэффициент полезного действия двигателя и приводит к повышенному удельному расходу топлива (на 1 л.с). Температуру газа приходится ограничивать для газотурбинных двигателей пассажирских и грузовых автомобилей в пределах 600—700°С, а в авиационных турбинах до 800—900°С потому, что еще очень дороги высокожаропрочные сплавы. В настоящее время уже существуют некоторые способы повышения коэффициента полезного действия газотурбинных двигателей путем охлаждения лопаток, использования тепла отработавших газов для подогрева поступающего в камеры сгорания воздуха, производства газов в высоко эффективных свободно-поршневых генераторах, работающих по дизель-компрессорному циклу с высокой степенью сжатия и т. д. От успеха работ в этой области во многом зависит решение проблемы создания высокоэкономичного автомобильного газотурбинного двигателя.

Схема реального газотурбинного двигателя

Схема реального газотурбинного двигателя
Этот двухкамерный двигатель, без теплообменника, имеет эффективную мощность 370 л. с. Топливом для него служит керосин. Скорость вращения вала компрессора достигает 26 000 об/мин, а скорость вращения вала тяговой турбины от 0 до 13 000 об/мин. Температура газов, поступающих на лопатки турбины, равна 815° Ц, давление воздуха на выходе из компрессора — 3,5 ат. Общий вес силовой установки, предназначенной для гоночного автомобиля, составляет 351 кг, причем газопроизводящая часть весит 154 кг, а тяговая часть с коробкой передач и передачей на ведущие колеса — 197 кг.
Газотурбинный автомобиль.
Газотурбинный автомобиль.
Газотурбинный автомобиль.
Газотурбинный автомобиль.

ЧИТАЙТЕ ТАКЖЕ НА САЙТЕ


Двигатель ЗМЗ 405

Семейство бензиновых двигателей ЗМЗ-405 можно по праву считать одним из предметов гордости их производителя – ОАО «Заволжского моторного завода». Высокое качество этих моторов подтверждено годами эксплуатации, и нередко в довольно суровых условиях. 4...

Цикл Миллера

Цикл Миллера — термодинамический цикл используемый в четырёхтактных двигателях внутреннего сгорания.Цикл Миллера был предложен в 1947 году американским инженером Ральфом Миллером как способ совмещения достоинств двигателя Аткинсона с более простым...

Двигатель Субару EJ25

Если бы моторы Subaru и в самом деле были так великолепны, как порой говорят, то у них отсутствовали бы характерные для других проблемы и не возникали специфические, но увы... Да, субары обычно комплектуются более мощными двигателями, чем другие япон...

Двигатель ЯМЗ 238

Мало какой из дизельных моторов может похвастать таким солидным «послужным списком», как ЯМЗ-238. Этот двигатель стал «сердцем» многих тысяч знакомых всем и каждому грузовых автомобилей «МАЗ», «КрАЗ», «Урал»; тракторов «Кировец» и «ЧТЗ»; комбайнов «Д...

Передний мост УАЗ Патриот Спайсер

Внедорожники УАЗ Патриот, Хантер с завода оснащаются двумя ведущими мостами: передним и задним. Благодаря наличию двух мостов на внедорожнике УАЗ Патриот его проходимости нет равных. Передний мост, в отличие от заднего, является управляемым. Это свид...

Двигатель ЗМЗ 409 ПРО (ZMZ PRO) 150 л.с.

С двигателем ЗМЗ 409 знакомы многие, ведь его легко можно встретить на УАЗ Патриот например. Мотор не ругает только ленивый. Невысокая мощность при объеме 2.7 литра, высокий расход топлива, сложная система ГРМ с цепным приводом и 16 клапанным механиз...

Установка фаз ГРМ двигатель ЗМЗ 409

И снова блиц обзор, так как в процессе ремонта нет времени отвлекаться на фотографии, да и пачкать телефон особого желания не возникает. Предварительные работы по демонтажу навесного оборудования и снятию клапанной крышки ГБЦ уже проведены. Передня...

Расточка блока цилиндров

Расточка блока цилиндров – это процесс физической проточки стенок цилиндров двигателя (на специальных станках) для восстановления правильной геометрической формы. Делается при капитальных ремонтах мотора, либо для тюнинга в основном для увелич...
 




Вертолётчик ▼     24.01.2017

На фотографии "Ми-8Т с двумя двигателями ТВ2-117" изображён вертолёт Ми-8МТ с двигателями ТВ3-117